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Abstract For a tandem queue system, the regenerative path is constructed. In an inter-regeneration cycle, the
sensitivity value of performance measure with respect to the adjustable parameter 6 can be acquired based on a fixed
length of observation. Furthermore, a new algorithm of parameter optimization for the tandem queue system is given,
which requires less simulation and no analysis for the perturbation transmission and makes a better estimation for the sen-

sitivity .

Keywords: discrete event dynamic system, tandem regenerative system, perturbation analysis, critical path,
stochastic optimization.

Many complex stochastic systems can be modeled as discrete event dynamic system (DEDS),
such as communication network, computer system, production line, and program evaluation and re-
view technique ( PERT)-project network. Due to complicated interactions of such discrete events over
time, it is important to study their performance and the optimization of their parameters. The tandem
queue system has been the object of many studies in DEDS. Many researches were focused on deduc-
ing the analytical solutions or empirical formulas for performance measure!'” . Typical analytical tool is
the queue theory, by which many useful conclusions in modeling, controlling and optimization for
DEDS have been reached. However, analytical solutions cannot be acquired easily for many DEDS,
so the discrete event simulatinon that emerged in recent years provides an additional set of design tools
and performance evaluation techniques. However, the simulation is a computationally expensive and
time-consuming process. And, the proper design of a simulation experiment for a complex stochastic

system is itself a difficult task.

In recent years, several new approaches have been developed aiming at improving the efficiency

of simulation, namely extracting as much information as possible from a single simulation run. A

[2,3]

technique, known as perturbation analysis (PA) methodology , was originally developed to obtain

0)

from a single sample path the sensitivity estimates d—‘ld% of performance measures J () of interest

with respect to parameter vector §. However, it is difficult to analyze the generation and transmis-
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sion of perturbation in the sample path and the choice of Af; when we adopt PA method, which, in
most cases, is a tedious task. So the critical path is proposed to be the nominal sample path. The

h{*+5 simplifies PA method by reducing the problem of PA to one analyzing

concept of the critical patl
the event of the critical path. Therefore, the parameter optimization of DEDS becomes not only intu-
itive, but also effective. By combining PA method with the stochastic approximation, an algorithm for
optimizing the system parameter (perturbation-analysis-robbins-monro-single-run, PARMSR) can be
obtained'?’ , which, based on observation of a fixed length (e.g. L items), can be used to compute

optimal parameter 6 to optimize the performance function J( ).

(3,

The PARMSR algorithm has a preferable convergent rate 6], However, there are two problems

for the algorithm that should be solved. One is how to determine the length L of the simulated sample

path, and the other is how to estimate ) effectively using PA method. The introduction of the

J(6
do

critical path makes it effective to compute d{i(eﬁ) using PA method. However, when L becomes very

large, the number of critical paths may become enormous in some cases; as a result it is difficult to

compute the sensitivity based on the critical path. Therefore, we should estimate the value L too.

In the paper, the regenerative tandem queue system with finite buffers ( for short, the tandem re-
generative system) is considered. Firstly, the model for the system is described, and the regenerative
process for tandem queue system is constructed. Then, the critical path is proposed and its steady
properties are discussed. Finally, the parameter optimization for the tandem regenerative system is

considered, and an optimization algorithm is proposed.
1 Construction of regenerative process for tandem queue system

Many problems in DEDS can be regarded as the tandem queue system as shown in Fig. 1. The
system consists of S stations labeled M, M,, **, M5, in which there
B, B, By,

C\Cyy....CoC, -
—(M )11 il 11—

Fig. 1 Tandem queue system with finite buffers.

may be buffer spaces B; between stations M; and M, to diminish the occurrence of blocking. We
denote by b, the capacity of the buffer B;, i =1,2,--,S -1 . Suppose P;[ k,0] is the time period
during which item C,, the kth item, enters the system and is processed in station M;, where 4 is the
control parameter vector, 1< i< S, k= 1. For simplicity, we write P;[ k] instead of P,[ k,8].
Suppose the time of the item C, arriving at the station M, is T}, the arrival interval between item C,
and Cy, is Ay, Ay =T, — Ti, and {A,, k=1 is an i. i. d. (independent identical distribu-
tion) stochastic sequence, with the distribution F,(x) and expectation EA, & % When i is fixed,
{P,[k]),k=1}isani. i. d. stochastic sequence with the distribution G‘* (x,6) and density func-

tion g7 (%,8), u,(6)={6(%,0)} ', EP[k] =

(0 < % . When i is variable, { P,[ k],
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R
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k=1l are independent of each other, and independent of {Ak k=11, Suppose that the system is
empty when the item C, arrives at the first station M;. We give the definition of the regeneration as

follows .

Definition 1. A stochastic process { X,,n =1} is a regenerative process if there exists a re-
newal process 7, = N+ -+ N,,kEN", N+ A f1,2,"-}(iNk} is i.i.d. and finite a.s.)
such that for each k&, the process in.,* .»n € N*| is independent of { X,, n<7,| and its distri-

bution is independent of the index k. We refer to 7, as the regeneration point, and N, the kth inter-
regeneration time cycle.

We denote by X;(n,8) the time of the item C, departing from the station M;, 1<i< S, V n

=1, and let X° = EA,-, D,(6) = Xs(n,8) ~ X°. Then D,(8) is the time period during which

=1

item C, passes through the system. Ref. [7] indicated that, if YV 1<i< S, A<u;(8), then | D,

(8),n =1} reaches a steady state after finite steps, and D(6) = lim % E D;(8) exists.
e i=1

If the system empties infinitely often a.s., then the system is regenerative. Ref. [8] gave the
sufficient and necessary condition for the system to empty infinitely often a.s. But this is not the case
for most systems. Therefore, we need to reconstruct the sequence of regeneration points, so that the

sequence can be applied to a more general tandem system.

Let Pn=(P1|:n], Pz[n],"',Ps[ﬂ]), Wn= (Wl[n],Wz[n],'--,Ws[n]) and Yn=
(T,-T,_,, P,, W,), where W,[n](1<i<S) is the time period during which item C, is wait-

ing in the station M,.
We define {o‘”} as a stochastic sequence satisfiying

0, !

0,

O

mfil > O'(l_l) : W, = 0}) l = 1,2,

(D} is not a renewal process ;

Obviously, when the number of stations S =2, the process {o
therefore it cannot be used as the sequence of regeneration points. Ref. [8] proved that a sub-se-

quence of | ‘1 is a renewal process; therefore, it can constitute a sequence of regeneration points .

S

For arbitrary @ = (a;, a5, ", a5) = (0, + ®) x (0, + ® ) x == x (0, + ), letting @’ =
(ay,a5,*,a5_;) and @™ = (ay,a; + a3, ,a; + *** + ag) , we define stochastic time {z{"} as
0, 1 =0,
rgl) = (1)
inf{n >r§l'1):(Wn_1 +P_)'<a”, (Tn - T,,_l,P,,) ;a}, !l =1,2,--.

Obviously, for any /, z'f,” is a regeneration point of Markov chain { Yn} . And for n = z',(,l) , We
y y S P

have
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(Wn—l+Pn—1)*s(Tn_Tn-1’ P’n)*' (2)

n

o < %©, we have

In this case, for any

Wr“’ = 0. (3)

Lemma 1180, Let a€ R%, such that 7,2 F(aV, o)W (a®, )¢5V (a®, )
<0and a™ >g". Then (rf,” , 1=1,2,-+) is a renewal process, the Markov chain (Y,; n =0,

1,%*) is regenerative with respect to (t'”), and the random variable ¥, obeys the distribution
ve = F,0®CH @+ @60 @69 @, (4)

For the tandem queue system with finite buffers, to make the system avoid being blocked when
buffer B, _, is full, the following condition should be met:

Tn - Tn-l Tn - Tn—l

0+ b, 1 =« o (5)
g() g( 1)
where =, is a stochastic order. Because T, - T, _;and T, - Ty =T, are i.i.d., the formula can
be expressed as [ g ,g' 1=, g + T,(6,6] , where b = (b7, b5, b51)), 5 is an ar-

()

bitrarily given number and g'"’ is a stochastic variable with g(0> >,8(1)+ 15,

Formula (5) ensures that in a regeneration cycle, the sum of the number of items being pro-
cessed in station M; and the capacity b;_, of buffer B;_; is stochastically larger than the number of
items being processed in station M, _;.

Therefore, for the tandem queue system with finite buffers, we construct the regenerative process
based on the theorem as follows.

Theorem 1. Let a € R%, . v, is prescribed in Formula (4), with a* > g” and [g'?, g']

=48+ Tl[i;(()), b]. Then (rgl), 1=1,2,) is a renewal process. Let n = z'f,l). Then X, =
)

a .

(Xl[ n] ,Xz[ nl, ,Xs[n]) is a regenerative process relative to

Proof. According to the characteristics of the tandem queue system, X;[ k], the time of item
C, departing from station M;, satisfies

X, [k] = x,(k-1]+ P[k],

(6)
X[k] = max(X,_ [ k], X;,[k-1]) + P,[k].

Firstly, from (1), ¥ [=0, t{!*" - £{! depends only on the waiting time and processing time

of the item C, with k= z'"; therefore, (z{?, 1=1,2,:+) is a renewal process, which can be a

sequence of regeneration points.

When k=17, by (3), W =0, so X,[k]=P[k]+ X, [k].

When & > rf,l), X(k]=max(X,[k],X,[k-1])+ P,[ k], which depends only on the time
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X.[k] for k=", and is not related to X,[ k] for k < (P . Because W.® =0, we can regard
C,» as C,, which is not related to !. Therefore, according to Definition 1, an} is regenerative

)]

a .

with respect to T

Remark 1. When the traffic intensity is smaller than 1, that is, JtF (de) > mathG,- (de),

there must exist @ satisfying (4) and @™ > g*. For example, we can choose € > 0 to be so small
that f— € > maxg(i), andset a=(f-¢,g’) .

Remark2. W ,[n-1]+P/[n-1]=X,[n-1], W ln-1]+P[n-1]+ W,[n-1]
+P2[n—1:|=X2[n—1:|. Furthermore, for i=1,2,"',S,W1|:n—1] + Pl[n—l] + o+ W,
(n-1]1+P[n-1]=X,[n-1]. Since (W,_,+P,_;) " =(W;[n-1]+P,[n-1],W,[n
—1]+VP1|:n—1]+Wz[n—1]+P2[n—1],"-), Formula (1) can be expressed as

¢ —infin > ¢V X[n-1]<a” ,(T,-T,,,P',) =al. (7)

a

2 (Critical path and its stability of tandem queue system

With the tandem queue system in Fig. 1, the processing of an item on a station is called an
event. We consider the connection between any two events. Denote the operation on item C, in sta-
tion M; by O; . Let 5C0;,,), F(O; ;) and m(O0; ;) be the beginning time, finishing time and
time period of event O, , , respectively. If X;[ k] > F(O, ,), we say that event O, , is blocked. In

this case, the almost simultaneous event!> of the event 0;,is

0i+1,k—b‘ ’ 0i+2,k—b‘,-bM TR 0i+l(i,k),k—b‘_—---—b

b
i+ d(i B -1

where 1(i,k) =min{S - i, argmin {jl kb, + -+ b,-”-_l} }. We call event O;_, ; and its al-
most simultaneous event the almost tight event of event O; ;. If O  is an almost tight event of event
0, ,and S(O;,)=F(0; ,)=X,[k'], then event O; , is a tight event of event O, ,, ex-
pressed as O, p < O;,,. Obviously, if Oy j» < Oy v and O; , < O, , then Oy ;o < O; ;. There-

fore, “ < ” is a partial order in the event set.

For arbitrary two events O, , and O; ., if there are events O;, O0,, -, O, such that 0, =
0; v>» 0,=0; ,and 0,_,< 0,(r=2,-+,1), then we call w(:', k'3 i, k)= 0,0,---0, a
path from event O, , to O, ,. If event O,_, is a tight event of O,, then we call w(i', k'; i, k)
a critical path from event 0; , to O, ,, denoted by w* (i', ¥ ; i, k). Let m(w) be the total

i
processing time of all events in the path w. Then m(w ") = 2 m(0,). Let C(i', k'; i, k) and
r=1

A(i’, k'; i, k) be the collection of critical paths and paths from event O, , to O; ,, respective-

ly. Then we have a lomma as follows.
Lemma 2. Hw* (!, ¥; i, k)EC(', k', i, k), then
m(w (', ki, k)) = max{m(w) | w € AW, k5 i,k)}.

Choose the mean processing time of an item through the tandem queue system as the performance
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XS[N)0:|

objective. Then J(6) = /%}.IE N

. In Ref. [5], we have proved that Xs[ N,6]=m(w”

(1,1;S,N)); therefore, J(0) = }’im—l,\?m(w*(l,l;S,N)).
> |

When N is large, the cost of computing w* (1, 1; S, N) is huge. To avoid it, we adopt the

aforementioned regenerative process.

By Theorem 1, there must exist an infinite increasing sequence 7'’ , (k— ). Then let

n=1t%. |X,| is a regenerative process, which makes C, non-blocked,
X,(n]l=X[n-~1]4+ Pnl,
X[n] = X,[n-11+ P[n-1], i=2,,8.

Therefore, to acquire the steady value of J(6) , we just simulate t,(,l) items every time. Ac-

cording to the conclusions in Refs. [5,9], the following theorem can be proved.
Theorem 2. If Ez{V < o, then J(§) = ﬁE(m(w* (1,1;8,z9))).
Ta

To improve the precision of estimating J( ), we can simulate r{?’ items. With the ith simula-

. . 1 * [ - i .
tion, we can obtain J;(8) = . (i)Em(w (1,1—5' 1);5’1'5. YY), i = 1,2,-*,p , so we have
Tﬂ

1) = > 37 16

3 Parameter optimization of tandem regenerative system

For the tandem regenerative system, based on an algorithm of computing critical paths given by
the principle of dynamic programming on Hasse graph in Ref. [10], an algorithm for parameter opti-

mization of the tandem regenerative system is derived in this section.

(1)

o » Where tﬁl) is the

Firstly, we should determine the number k of items to be simulated, k£ =

first regeneration point. From (7), we have

oy

=infin >0: X[n-1]lga”" (T, -T,,,P',) = a}. (8)

To compute the number z{", we should first determine the value a. According to Remark 1,

we can choose a small enough value € > 0 such that f — ¢ > max g(i), and then we let a = (f - ¢,
).
Having acquired the critical path, a perturbation analysis can be processed using the method de-

dJ(8) dJ(6)
do - " df

scribed in Ref. [4] to compute

timal value 8" of J(8).

Then from 6,,, = 8, + ¢ , we can estimate the op-

With the known performance function J(§), we choose the optimal coefficient ¢, by a linear
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dJj(8) cd](@)
dé df

S, %) has no analytical expression, so only simulation can be adopted. The basic method is to

search in the direction ; that is, ¢, = arg min{ ]( g+ ) } In our study, w” (1,1;

mic, i =1,2,+*, m uniformly in interval [0, ¢ ](c is a constant) . Then we
dJ(6)
dé

m points with the ordinal optimization method'"} . So considering the corresponding c; as the recur-

choose m numbers ¢; =

get m points § + ¢; ,i=1,2,,m , where a “good enough” point can be found among the

sive coefficient, a recursion can be realized.

Based on the discussion above, an algorithm for the parameter optimization can be derived as fol-
lows.

Suppose the following parameters are known beforehand: density function f of items arriving ran-
domly, density function vector g of service times in every station and the vector b of capacities in ev-

ery buffer and error constant &.

Step 1. Choose starting point 8y, k=1, 6 >0, a=(f-¢,g’) with e < f—max g(i), and
(0 _
7, =0.

Step 2. Compute (¥ =inf{n >0: X[(n-1l<a*,(T,- T, ,,P',) =0} to acquire the

a

number ¢ of items to be simulated.
Step 3. Simulate rflk) items, and then compute the critical path w * (1, rlk- Dom, rﬁ")).
J(8)

Step 4. Compute d using the method in Ref. [4].

do

Step 5. Choose m numbers ¢;,c,," ", ¢,, uniformly in the interval [0, ¢ ], and then choose the

recursive coefficient in the next step based on m vectors 8, + c; d']d(:) ,(i =1,2,,m) via the or-
dinal optimization.
Step 6. 0,1 < 0, + ¢ d](ﬁ)’ E<k +1.

da
Step 7. If || 6,,,- 6, | <&, then exit, else, go to Step 2.
4 Conclusions

In this paper, the regenerative properties of the tandem queue system with finite buffers have
been discussed; the regenerative process has been constructed so that the computation of the steady
value of the performance function can be reduced to the problem of simulating finite items. The result
is applied to the parameter optimization, and the steady value of the performance function is obtained
through finite simulations, so simulation of a large number of items is reduced simulation of a small
quantity of items. The studies of regeneration, critical path and ordinal optimization have a common
objective; that is, to reduce the number of simulations and at the same time to improve efficiency of

simulation. Therefore, the combination of the three methods can certainly improve the efficiency of



858 PROGRESS IN NATURAL SCIENCE Vol. 11

simulation. This is an interesting problem. We will discuss the complexity of the algorithm and im-

prove the algorithm in a near future.
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